| View previous topic :: View next topic   | 
	
	
	
		| Author | 
		Message | 
	
	
		daj95376
 
 
  Joined: 23 Aug 2008 Posts: 3854
 
  | 
		
			
				 Posted: Thu Jun 30, 2011 4:08 pm    Post subject: Puzzle 11/06/30: ~ XY | 
				     | 
			 
			
				
  | 
			 
			
				 	  | Code: | 	 		   +-----------------------+
 
 | . . . | . . . | 2 7 6 |
 
 | . 7 1 | . . . | . 5 . |
 
 | . 2 4 | . . 7 | 1 . . |
 
 |-------+-------+-------|
 
 | . . . | 4 . 3 | . 2 . |
 
 | . . . | . 8 . | 4 . . |
 
 | . . 3 | 2 . 6 | 5 . . |
 
 |-------+-------+-------|
 
 | 4 . 7 | . 2 9 | 6 . 5 |
 
 | 2 9 . | 6 . . | . . 7 |
 
 | 3 . . | . . . | 9 4 . |
 
 +-----------------------+
 
 | 	  
 
Play this puzzle online at the Daily Sudoku site | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		tlanglet
 
 
  Joined: 17 Oct 2007 Posts: 2468 Location: Northern California Foothills
  | 
		
			
				 Posted: Fri Jul 01, 2011 3:01 pm    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				I worked hard on this puzzle and found a couple of weird, messy steps that did not do any significant damage before I found a reasonably clean back breaker...........
 
 
almost xy-chain with r2c4(89=3); r78c8<>8
 
If r2c4=89: (8)r8c7=(8)r2c7-(8=9)r2c4-r5c4=r6c5-(9=8)r6c8; 
 
If r2c4=(3): (3)r2c4-r7c4=r8c5-(3=8)r8c7;
 
 
xy-wing (35-8) vertex r3c4; r2c4,r9c6<>8
 
 
I would appreciate any suggestion how to combine the two statements for the almost xy-chain.
 
 
Ted | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		daj95376
 
 
  Joined: 23 Aug 2008 Posts: 3854
 
  | 
		
			
				 Posted: Fri Jul 01, 2011 3:18 pm    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				Ted,
 
 
Performing a Kraken Cell on r2c4 is a common alternative for your scenario. All you need to do is split your chain at r2c4:
 
 
 	  | Code: | 	 		  Kraken Cell r2c4:
 
 
read l-to-r:                           ( =9)r2c4-r5c4=r6c5-(9=8)r6c8 -(8)r78c8
 
read r-to-l: (8)r78c8- (8)r8c7=(8)r2c7-(8= )r2c4
 
read l-to-r:                           (  3)r2c4-r7c4=r8c5-(3=8)r8c7 -(8)r78c8
 
 | 	  
 
You can also perform a 2-String Kite for r2c4<>3, and then use your chain -- which doesn't appear to be an XY-Chain pattern.
 
 
Regards, Danny | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		Luke451
 
 
  Joined: 20 Apr 2008 Posts: 310 Location: Southern Northern California
  | 
		
			
				 Posted: Fri Jul 01, 2011 9:18 pm    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				 	  | tlanglet wrote: | 	 		  I worked hard on this puzzle and found a couple of weird, messy steps that did not do any significant damage before I found a reasonably clean back breaker...........
 
 
almost xy-chain with r2c4(89=3); r78c8<>8
 
If r2c4=89: (8)r8c7=(8)r2c7-(8=9)r2c4-r5c4=r6c5-(9=8)r6c8; 
 
If r2c4=(3): (3)r2c4-r7c4=r8c5-(3=8)r8c7;
 
 
xy-wing (35-8) vertex r3c4; r2c4,r9c6<>8
 
 
I would appreciate any suggestion how to combine the two statements for the almost xy-chain.
 
 
Ted | 	  
 
*Maybe* this'll do it, avoid a net and keep your xy.
 
 
(8=3)r8c7-r8c5=r7c4-(3)r2c4=[xy chain that I'm too lazy to notate but lives in the * cells]
 
 
 
  	  | Code: | 	 		  *-----------------------------------------------------------*
 
 | 589   3     89    | 1589  149   458   | 2     7     6     |
 
 | 689   7     1     |*389   369   2     |*38    5     4     |
 
 | 568   2     4     | 358   36    7     | 1     389   89    |
 
 |-------------------+-------------------+-------------------|
 
 | 189   68    689   | 4     5     3     | 7     2     189   |
 
 | 79    5     2     |*79    8     1     | 4     6     3     |
 
 | 1789  4     3     | 2    *79    6     | 5    *89    189   |
 
 |-------------------+-------------------+-------------------|
 
 | 4     18    7     | 138   2     9     | 6     138   5     |
 
 | 2     9     58    | 6     134   458   |*38    138   7     |
 
 | 3     168   568   | 1578  17    58    | 9     4     2     |
 
 *-----------------------------------------------------------* | 	 
  | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		ronk
 
 
  Joined: 07 May 2006 Posts: 398
 
  | 
		
			
				 Posted: Fri Jul 01, 2011 9:49 pm    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				 	  | tlanglet wrote: | 	 		  almost xy-chain with r2c4(89=3); r78c8<>8
 
If r2c4=89: (8)r8c7=(8)r2c7-(8=9)r2c4-r5c4=r6c5-(9=8)r6c8; 
 
If r2c4=(3): (3)r2c4-r7c4=r8c5-(3=8)r8c7;
 
...
 
I would appreciate any suggestion how to combine the two statements for the almost xy-chain. | 	  
 
I see no clever way to convert the net to a chain. I suppose this does you no good but, in modernized nice-loop notation, it would look like this:
 
 
r78c8 -8- r8c7 =8= r2c7 -8- r2c4 {-3- r7c4 =3= r8c5 -3- r8c7 -8- r78c8} -9- r5c4 =9= r6c5 -9- r6c8 -8- r78c8 ==> r78c8<>8 | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		dejsmith
 
 
  Joined: 23 Oct 2005 Posts: 42
 
  | 
		
			
				 Posted: Fri Jul 01, 2011 10:23 pm    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				How come you cannot use the Kite in r7/c7 to eliminate the 3 in r2c4?  Then why isn't that an XY Chain, starting at r8c7: 83-38-89-97-79-98; & r78c8<>8?
 
 
I tried something different using a UR & 2 kites, but did not see the XY Chain.  Instead I tried looking for an almost pattern & chose an ANP in r4c3; 89-6.  6 led to a contradiction & 89 solved the puzzle.  Was I just lucky & do I have an incorrect understanding of these techniques?
 
 
Dave | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		Marty R.
 
 
  Joined: 12 Feb 2006 Posts: 5770 Location: Rochester, NY, USA
  | 
		
			
				 Posted: Sat Jul 02, 2011 4:52 am    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				Finned X-Wing; r2c4<>3
 
W-Wing (89), SL 9, c5, flightless with transport; r2c7, r3c4<>8
 
XY-Wing (385); r1c6, r9c4<>5 | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		 |