| View previous topic :: View next topic   | 
	
	
	
		| Author | 
		Message | 
	
	
		daj95376
 
 
  Joined: 23 Aug 2008 Posts: 3854
 
  | 
		
			
				 Posted: Tue Feb 03, 2009 5:39 pm    Post subject: Set NNP_2 Puzzle 5 -- Advanced | 
				     | 
			 
			
				
  | 
			 
			
				 	  | Code: | 	 		   +-----------------------+
 
 | 5 . . | 9 . . | . 6 4 |
 
 | . . . | . . . | . 3 . |
 
 | . . . | 5 . . | 9 . . |
 
 |-------+-------+-------|
 
 | 8 . 9 | 4 . . | 1 2 . |
 
 | . . . | . . . | 8 5 7 |
 
 | . . . | . . 2 | . . . |
 
 |-------+-------+-------|
 
 | . . 7 | 6 5 . | . 9 . |
 
 | 9 6 . | 2 3 . | 7 . . |
 
 | 1 . . | . 9 . | . . 3 |
 
 +-----------------------+
 
 | 	  
 
Play this puzzle online at the Daily Sudoku site | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		storm_norm
 
 
  Joined: 18 Oct 2007 Posts: 1741
 
  | 
		
			
				 Posted: Wed Feb 04, 2009 3:49 am    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				 	  | Code: | 	 		  .------------------.------------------.------------------.
 
| 5     17    38   | 9     18    37   | 2     6     4    |
 
| 2467  9     26   | 18    24    67   | 5     3     18   |
 
| 246   124   38   | 5     24    36   | 9     7     18   |
 
:------------------+------------------+------------------:
 
| 8     3     9    | 4     7     5    | 1     2     6    |
 
| 246   24    126  | 3     16    9    | 8     5     7    |
 
| 67    57    156  | 18    168   2    | 3     4     9    |
 
:------------------+------------------+------------------:
 
| 3     8     7    | 6     5     1    | 4     9     2    |
 
| 9     6     4    | 2     3     8    | 7     1     5    |
 
| 1     25    25   | 7     9     4    | 6     8     3    |
 
'------------------'------------------'------------------' | 	  
 
UR {2,4} in r23c15 says that the 6 can be removed from r5c1 because in order to avoid the deadly pattern, both the 2 and the 4 must exist in r5c1.
 
 
with that 6 gone, the resulting UR {2,4} in r35c12 makes a strong inference with the 1 in r3c2 and the 6 in r3c1, then forms this chain
 
 
UR24[(1)r3c2 = (6)r3c1] - (6=7)r6c1 - (7)r6c2 = (7)r1c2; r1c2 <> 1 
 
 
and solves it. | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		Steve R
 
 
  Joined: 24 Oct 2005 Posts: 289 Location: Birmingham, England
  | 
		
			
				 Posted: Wed Feb 04, 2009 12:17 pm    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				In Norm’s grid an alternative route is to eliminate 7 from r2c1 using the W-wing with pincers (67) in r2c6 and r6c1. They are linked by the conjugates with respect to 6 in the third row.
 
 
If you prefer to assume the puzzle has a unique solution note where the completed cells contain 2 and 4:
 
 
 	  | Code: | 	 		  .------------------.--------------------.------------------. 
 
| 5     17    38   |  9     18     37   | *2    6    *4    | 
 
| 2467  9     26   |  18    24     67   |  5    3     18   | 
 
| 246   124   38   |  5     24     36   |  9    7     18   | 
 
:------------------+--------------------+------------------: 
 
| 8     3     9    | *4     7      5    |  1   *2     6    | 
 
| 246   24    126  |  3     16     9    |  8    5     7    | 
 
| 67    57    156  |  18    168   *2    |  3   *4     9    | 
 
:------------------+--------------------+------------------: 
 
| 3     8     7    |  6     5      1    | *4     9   *2    | 
 
| 9     6    *4    | *2     3      8    |  7     1    5    | 
 
| 1     25    25   |  7     9     *4    |  6     8    3    | 
 
'------------------'--------------------'------------------' | 	  
 
 
The reverse BUG means that r9c3 cannot contain 2, again solving the puzzle in one step.
 
 
 
Steve | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		tlanglet
 
 
  Joined: 17 Oct 2007 Posts: 2468 Location: Northern California Foothills
  | 
		
			
				 Posted: Wed Feb 04, 2009 3:15 pm    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				My solution was definitely more routine. 
 
 
The UR <24> in r23c15 noted be Norm has a strong link on <4> in row <2> to delete <2> from r3c1.
 
That opens a xy-wing <246> with pivot <26> in r2c3 and then,
 
a xyz-wing <267> with pivot in r2c1 deletes <6> in r3c1 and completes the puzzle.
 
 
Both the observation by Norm regarding the UR <24> and the reverse BUG condition noted by Steve were very enlightening. Such views suggest still more techniques to solve a puzzle. My new buzz phrase is "look globally"  
 
 
Ted | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		storm_norm
 
 
  Joined: 18 Oct 2007 Posts: 1741
 
  | 
		
			
				 Posted: Wed Feb 04, 2009 6:15 pm    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				 	  | Quote: | 	 		  In Norm’s grid an alternative route is to eliminate 7 from r2c1 using the W-wing with pincers (67) in r2c6 and r6c1. They are linked by the conjugates with respect to 6 in the third row. 
 
 
 | 	  
 
 
and to compliment the w-wing, there is a m-wing on {6,7}
 
which eliminates the 6 in r3c1
 
via cells, r6c1, r2c1, r2c6 and r3c6. | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		Marty R.
 
 
  Joined: 12 Feb 2006 Posts: 5770 Location: Rochester, NY, USA
  | 
		
			
				 Posted: Mon Feb 09, 2009 1:40 am    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				| I used the Hidden UR on 24, which exposed the XY-Wing on 264 and an M-Wing on 67 finished it. | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		 |