| View previous topic :: View next topic   | 
	
	
	
		| Author | 
		Message | 
	
	
		daj95376
 
 
  Joined: 23 Aug 2008 Posts: 3854
 
  | 
		
			
				 Posted: Fri Dec 26, 2008 10:01 pm    Post subject: Set H Puzzle 13 | 
				     | 
			 
			
				
  | 
			 
			
				 	  | Code: | 	 		   +-----------------------+
 
 | . . 2 | . 4 . | . . 7 |
 
 | . 8 . | . . . | 4 . . |
 
 | 1 . 6 | 3 . . | 2 . . |
 
 |-------+-------+-------|
 
 | . . 8 | . . . | 9 4 . |
 
 | 2 . . | . 9 . | . . 6 |
 
 | . . . | . . 3 | . . . |
 
 |-------+-------+-------|
 
 | . 2 7 | 9 . . | 6 . 1 |
 
 | . . . | 8 . . | . . . |
 
 | 3 . . | . 2 . | 7 . 9 |
 
 +-----------------------+
 
 | 	  
 
Play this puzzle online at the Daily Sudoku site | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		tlanglet
 
 
  Joined: 17 Oct 2007 Posts: 2468 Location: Northern California Foothills
  | 
		
			
				 Posted: Sun Dec 28, 2008 12:35 am    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				I used six steps to solve this puzzle but have no idea what was really required; three steps were URs with overlaying x-wings!
 
 
  	  | Quote: | 	 		  skyscraper <3>
 
ER <5>
 
UR <59> with x-wing  <9>
 
UR <57> with x-wing <7>
 
UR <67> with x-wing <7>
 
xyz <156>
 
 | 	  
 
Ted | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		storm_norm
 
 
  Joined: 18 Oct 2007 Posts: 1741
 
  | 
		
			
				 Posted: Fri Jan 02, 2009 8:30 am    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				 	  | Code: | 	 		  .---------------------.---------------------.---------------------.
 
| 59     359    2     | 156    4      15689 | 1358   13569  7     |
 
| 7      8     *359   | 1256   156    12569 | 4      13569 *35    |
 
| 1      4      6     | 3      578    5789  | 2      59     58    |
 
:---------------------+---------------------+---------------------:
 
| 56     13567  8     | 12567  156    1256  | 9      4     *235   |
 
| 2      1357  *135   | 4      9      158   | 1358   1357   6     |
 
| 4      15679  159   | 12567  1568   3     | 158    157    258   |
 
:---------------------+---------------------+---------------------:
 
| 8      2      7     | 9      35     4     | 6      35     1     |
 
| 569    1569   159   | 8      13567  1567  | 35     2      4     |
 
| 3      156    4     | 156    2      156   | 7      8      9     |
 
'---------------------'---------------------'---------------------' | 	  
 
the marked skyscraper on 3's goes a long way.
 
 
then I found this mixed w-wing extended blah blah blah chain....
 
 	  | Code: | 	 		  .------------------.------------------.------------------.
 
| 59    59    2    |*16    4     8    |*13    136   7    |
 
| 7     8     3    | 2    *16    9    | 4     16    5    |
 
| 1     4     6    | 3    *57   *57   | 2     9     8    |
 
:------------------+------------------+------------------:
 
| 56    1567  8    | 1567 -156   2    | 9     4     3    |
 
| 2     3     15   | 4     9    *15   | 8     7     6    |
 
| 4     67    9    | 67    8     3    | 15    15    2    |
 
:------------------+------------------+------------------:
 
| 8     2     7    | 9    *35    4    | 6    *35    1    |
 
| 569   1569  15   | 8     1357  1567 |*35    2     4    |
 
| 3     156   4    | 15    2     156  | 7     8     9    |
 
'------------------'------------------'------------------' | 	  
 
basically the strong links on 5 in row 3 connect the {3,5} cell in r7c5 and the {1,5} cell in r5c6, which makes either the 1 or the 3 true.  do a little extening from the 3 and get this chain to elimate the 1 in r4c5 to solve it.
 
 
(1=5)r5c6 - (5)r3c6 = (5)r3c5 - (5=3)r7c5 - (3)r7c8 = (3)r8c7 - (3=1)r1c7 - (1)r1c4 = (1)r2c5; r4c5 <> 1 | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		Asellus
 
 
  Joined: 05 Jun 2007 Posts: 865 Location: Sonoma County, CA, USA
  | 
		
			
				 Posted: Fri Jan 02, 2009 7:42 pm    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				Or, that's a 9-cell XY-Chain.
 
 
Here's a shorter ALS Chain that does the trick:
 
(5)r4c4|(5)r89c6 - (5=1)r5c6 - ALS[(1)r4c5=(5)r4c15] - (5)r4c4=(5)r9c4 - (5)r4c4|(5)r89c6; r4c4|r89c6<>5
 
 
Descriptively, r5c6 is <5> or <1>.  If <1>, the 56 naked pair in r4 means r4c4 is not <5> so r9c4 must be <5>.  Thus, r5c6 and/or r9c4 must be <5>, eliminating <5> from r4c4 and r89c6. | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		cgordon
 
 
  Joined: 04 May 2007 Posts: 769 Location: ontario, canada
  | 
		
			
				 Posted: Fri Jan 02, 2009 8:25 pm    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				| 6 steps like Ted - but I started with an ER on <3> that went a long way. Then an x wing on 7; Type 4 URs on 57 and 59; an ER on 5 and the xyz wing <156>. | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		storm_norm
 
 
  Joined: 18 Oct 2007 Posts: 1741
 
  | 
		
			
				 Posted: Mon Jan 05, 2009 2:15 am    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				 	  | Asellus wrote: | 	 		  Or, that's a 9-cell XY-Chain.
 
 
Here's a shorter ALS Chain that does the trick:
 
(5)r4c4|(5)r89c6 - (5=1)r5c6 - ALS[(1)r4c5=(5)r4c15] - (5)r4c4=(5)r9c4 - (5)r4c4|(5)r89c6; r4c4|r89c6<>5
 
 
Descriptively, r5c6 is <5> or <1>.  If <1>, the 56 naked pair in r4 means r4c4 is not <5> so r9c4 must be <5>.  Thus, r5c6 and/or r9c4 must be <5>, eliminating <5> from r4c4 and r89c6. | 	  
 
 
very nice !!   | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		 |